SISTEMAS

ESPECIAIS

BOLETIM

Saiba por e-mail as novidades do site.

Endereço de correio:

 

--- Clique Todo Dia para Colaborar! ---

Para obter material didático sobre outras áreas da biologia, acesse:

 

O MECANISMO DA AUDIÇÃO

O som é produzido por ondas de compressão e descompressão alternadas do ar. As ondas sonoras propagam-se através do ar exatamente da mesma forma que as ondas propagam-se na superfície da água. Assim, a compressão do ar adjacente de uma corda de violino cria uma pressão extra nessa região, e isso, por sua vez, faz com que o ar um pouco mais afastado se torne pressionado também. A pressão nessa segunda região comprime o ar ainda mais distante, e esse processo repete-se continuamente até que a onda finalmente alcança a orelha.

A orelha humana é um órgão altamente sensível que nos capacita a perceber e interpretar ondas sonoras em uma gama muito ampla de freqüências (16 a 20.000 Hz - Hertz ou ondas por segundo).

A captação do som até sua percepção e interpretação é uma seqüência de transformações de energia, iniciando pela sonora, passando pela mecânica, hidráulica e finalizando com a energia elétrica dos impulsos nervosos que chegam ao cérebro.

ENERGIA SONORA – ORELHA EXTERNA

O pavilhão auditivo capta e canaliza as ondas para o canal auditivo e para o tímpano

O canal auditivo serve como proteção e como amplificador de pressão

Quando se choca com a membrana timpânica, a pressão e a descompressão alternadas do ar adjacente à membrana provocam o deslocamento do tímpano para trás e para frente. 

Imagem: www.if.ufrj.br/teaching/fis2/ondas2/ouvido/ouvido.html 

Como mostrado acima, uma compressão força o tímpano para dentro e a descompressão o força para fora. Logo, o tímpano vibra com a mesma freqüência da onda. Dessa forma, o tímpano transforma as vibrações sonoras em vibrações mecânicas que são comunicadas aos ossículos (martelo, bigorna e estribo). 

ENERGIA MECÂNICA – ORELHA MÉDIA

O centro da membrana timpânica conecta-se com o cabo do martelo. Este, por sua vez, conecta-se com a bigorna, e a bigorna com o estribo. Essas estruturas, como já mencionado anteriormente (anatomia da orelha média), encontram-se suspensas através de ligamentos, razão pela qual oscilam para trás e para frente.

A movimentação do cabo do martelo determina também, no estribo, um movimento de vaivém, de encontro à janela oval da cóclea, transmitindo assim o som para o líquido coclear. Dessa forma, a energia mecânica é convertida em energia hidráulica.

Os ossículos funcionam como alavancas, aumentando a força das vibrações mecânicas e por isso, agindo como amplificadores das vibrações da onda sonora. Se as ondas sonoras dessem diretamente na janela oval, não teriam pressão suficiente para mover o líquido coclear para frente e para trás, a fim de produzir a audição adequada, pois o líquido possui inércia muito maior que o ar, e uma intensidade maior de pressão seria necessária para movimenta-lo. A membrana timpânica e o sistema ossicular convertem a pressão das ondas sonoras em uma forma útil, da seguinte maneira: as ondas sonoras são coletadas pelo tímpano, cuja área é 22 vezes maior que a área da janela oval. Portanto, uma energia 22 vezes maior do que aquela que a janela oval coletaria sozinha é captada e transmitida, através dos ossículos, à janela oval. Da mesma forma, a pressão de movimento da base do estribo apresenta-se 22 vezes maior do que aquela que seria obtida aplicando-se ondas sonoras diretamente à janela oval. Essa pressão é, então, suficiente para mover o líquido coclear para frente e para trás.

ENERGIA HIDRÁULICA – ORELHA INTERNA

À medida que cada vibração sonora penetra na cóclea, a janela oval move-se para dentro, lançando o líquido da escala vestibular numa profundidade maior dentro da cóclea. A pressão aumentada na escala vestibular desloca a membrana basilar para dentro da escala timpânica; isso faz com que o líquido dessa câmara seja empurrado na direção da janela oval, provocando, por sua vez, o arqueamento dela para fora. Assim, quando as vibrações sonoras provocam a movimentação do estribo para trás, o processo é invertido, e o líquido, então, move-se na direção oposta através do mesmo caminho, e a membrana basilar desloca-se para dentro da escala vestibular.

Movimento do líquido na cóclea quando o estribo é impelido para frente.

Imagem: GUYTON, A.C. Fisiologia Humana. 5ª ed., Rio de Janeiro, Ed. Interamericana, 1981.

A vibração da membrana basilar faz com que as células ciliares do órgão de Corti se agitem para frente e para trás; isso flexiona os cílios nos pontos de contato com a membrana tectórica (tectorial). A flexão dos cílios excita as células sensoriais e gera impulsos nas pequenas terminações nervosas filamentares da cóclea que enlaçam essas células. Esses impulsos são então transmitidos através do nervo coclear até os centros auditivos do tronco encefálico e córtex cerebral. Dessa forma, a energia hidráulica é convertida em energia elétrica.

A flexão dos cílios nos pontos de contato com a membrana tectórica excita as células sensoriais, gerando impulsos nervosos nas pequenas terminações nervosas filamentares da cóclea que enlaçam essas células.

PERCEPÇÃO DA ALTURA DE UM SOM

Um fenômeno chamado ressonância ocorre na cóclea para permitir que cada freqüência sonora faça vibrar uma secção diferente da membrana basilar. Essas vibrações são semelhantes àquelas que ocorrem em instrumentos musicais de corda. Quando a corda de um violino, por exemplo, é puxada para um lado, fica um pouco mais esticada do que o normal e esse estiramento faz com que se mova de volta na direção oposta,  o que faz com que a corda se torne esticada mais uma vez, mas agora na direção oposta, voltando então à primeira posição. Esse ciclo repete-se várias vezes, razão pela qual uma vez que a corda começa a vibrar, assim permanece por algum tempo.

Quando sons de alta freqüência penetram na janela oval, sua propagação faz-se apenas num pequeno trecho da membrana basilar, antes que um ponto de ressonância seja alcançado. Como resultado, a membrana move-se forçosamente nesse ponto, enquanto o movimento de vibração é mínimo por toda a membrana. Quando uma freqüência média sonora penetra na janela oval, a onda propaga-se numa maior extensão ao longo da membrana basilar antes da área de ressonância ser atingida. Finalmente, uma baixa freqüência sonora propaga-se ao longo de quase toda a membrana antes de atingir seu ponto de ressonância. Dessa forma, quando as células ciliares próximas à base da cóclea são estimuladas, o cérebro interpreta o som como sendo de alta freqüência (agudo), quando as células da porção média da cóclea são estimuladas, o cérebro interpreta o som como de altura intermediária, e a estimulação da porção superir da cóclea é interpretada como som grave.

PERCEPÇÃO DA INTENSIDADE DE UM SOM

A intensidade de um som é determinada pela intensidade de movimento das fibras basilares. Quanto maior o deslocamento para frente e para trás, mais intensamente as células ciliares sensitivas são estimuladas e maior é o número de estímulos transmitidos ao cérebro para indicar o grau de intensidade. Por exemplo, se uma única célula ciliar próxima da base da cóclea transmite um único estímulo por segundo, a altura do som será interpretada como sendo de um som agudo, porém de intensidade quase zero. Se essa mesma célula ciliar é estimulada 1.000 vezes por segundo, a altura do som permanecerá a mesma (continuará agudo), mas a sua intensidade será extrema (a potência do som será maior devido à intensidade de movimento das fibras basilares).

ENERGIA  ELÉTRICA – DA ORELHA INTERNA AOS CENTROS AUDITIVOS DO TRONCO ENCEFÁLICO E CÓRTEX CEREBRAL

Após atravessarem o nervo coclear, os estímulos são transmitidos, como já dito anteriormente, aos centros auditivos do tronco encefálico e córtex cerebral, onde são processados.

Os centros auditivos do tronco encefálico relacionam-se com a localização da direção da qual o som emana e com a produção reflexa de movimentos rápidos da cabeça, dos olhos ou mesmo de todo o corpo, em resposta a estímulos auditivos.

O córtex auditivo, localizado na porção média do giro superior do lobo temporal, recebe os estímulos auditivos e interpreta-os como sons diferentes.

Resumindo: na orelha interna, as vibrações mecânicas se transformam em ondas de pressão hidráulica que se propagam pela endolinfa. A vibração da janela oval, provocada pela movimentação da cadeia ossicular, move a endolinfa e as células ciliares do órgão de Corti, gerando um potencial de ação que é transmitido aos centros auditivos do tronco encefálico e do córtex cerebral. 

Recomende este site

Clique para consultar na Bioloja:

Apresentação: Introdução à Fisiologia Humana

Apresentação: Sistema Sensorial 1 - Visão e Tato

Apresentação: Sistema Sensorial 2 - Audição, Olfato e Gustação

 

 

Clique para consultar no UOL Cursos Online:

Fisiologia do Sistema Sensorial

Fisiologia do Sistema Sensorial (audiocurso)

Cuidados com a Pele

 

 

Clique para consultar no Submarino:

Oftalmologia Clínica  JACK J KANSKI

Atlas de Oftalmologia Clínica DAVID J. SPALTON, PAUL A. HUNTER, ROGER A. HITCHINGS

O Tato, o Olfato e o Paladar  STEVEN PARKER

Paladar - Gosto, Olfato, Tato e Temperatura - Fisiologia e Fisiopatologia CINCINATO RODRIGUES SILVA NETTO

O Ouvido e a Audição STEVEN PARKER

Pele Tecido ERISON PIRES

Anatomia e Histologia da Pele  NÍLCEO S. MICHALANY & JORGE MICHALANY

Neurociências: Desvendando o Sistema Nervoso MARK F. BEAR & BARRY W. CONNORS & MICHAEL A. PARADISO

Neurofisiologia Clínica LUIZ CARLOS PINTO

Tratado de Fisiologia Médica ARTHUR C. GUYTON & JOHN E. HALL

Netter - Atlas de Fisiologia Humana  BRUCE M. KOEPPEN, JOHN T. HANSEN

Fisiologia Humana  ARTHUR C. GUYTON
Fundamentos de Anatomia e Fisiologia  DONALD C. RIZZO

 

     

www.afh.bio.br © Ana Luisa Miranda-Vilela